=ПИСЬМА РЕДАКТОРУ=

УДК 547.789

2,5-ДИМЕТОКСИБЕНЗИЛИДЕНРОДАНИН И ЕГО АЦИКЛИЧЕСКИЕ АНАЛОГИ КАК СЕЛЕКТИВНЫЕ ФЛУОРОГЕННЫЕ КРАСИТЕЛИ ЛИПИДНЫХ КАПЕЛЬ ЖИВЫХ КЛЕТОК¹

© 2024 г. С. А. Краснова^{*, **, #}, Ю. А. Богданова^{*}, А. И. Соколов^{*, ***}, И. Н. Мяснянко^{*, ***}, А. Ю. Смирнов^{*, ***}, М. С. Баранов^{*, ***}

 ФГБУН "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН, Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10
 ** Национальный исследовательский университет "Высшая школа экономики", Россия, 101000 Москва, ул. Мясницкая, 20
 *** Российский национальный исследовательский медицинский университет имени Н.И. Пирогова, Россия, 117997 Москва, ул. Островитянова, 1

> Поступила в редакцию 18.05.2023 г. После доработки 18.06.2023 г. Принята к публикации 19.06.2023 г.

Синтезирована серия арилиденроданинов и их ациклических аналогов, изучены флуоресцентные свойства полученных соединений. Показано, что производные, содержащие 2,5-диметоксибензилиденовый фрагмент или аналогичные группы, характеризуются заметным варьированием квантового выхода флуоресценции в зависимости от свойств среды. Установлено, что два полученных соединения – диметоксибензилиденроданин и диметоксибензилиденмалононитрил – могут выступать в роли селективных флуорогенных красителей для липидных капель (адипосом) живых клеток для мечения в условиях флуоресцентной микроскопии.

Ключевые слова: роданины, флуорогены, адипосомы, липидные капли, флуоресценция **DOI:** 10.31857/S0132342324010089, **EDN:** OWGMCP

введение

На сегодняшний день флуоресцентная микроскопия остается одним из ключевых методов анализа в биологических исследованиях. За многие годы было разработано множество способов маркирования живых объектов с применением самых разных флуоресцентных красителей. Однако в последнее время особой популярностью на фоне классических маркеров пользуются флуорогенные метки. Они не имеют собственной выраженной флуоресценции в свободном виде, но приобретают ее при связывании с целевым объектом [1–3]. Благодаря этому такие красители могут быть намного более селективными и фотостабильными, чем классические метки с постоянной флуоресценцией. За последние годы мы показали, что арилиденимидазолоны могут использоваться в качестве флуорогенных маркеров, проявляющих заметную флуоресценцию при взаимодействии с определенными клеточными органеллами [4, 5].

Причина слабой флуоресценции свободных имидазолоновых красителей – возможность безызлу-

¹ Дополнительные материалы к этой статье доступны по doi ... для авторизованных пользователей.

[#]Автор для связи: (тел.: +7 (964) 865-16-24; эл. почта: svetlanakr2002@mail.ru).

чательного сброса энергии возбуждения, возникающего за счет подвижности арилиденового фрагмента [6]. Однако введение в него различных заместителей (примеры представлены на схеме 1) приводит к возрастанию квантового выхода флуоресценции в неполярных и апротонных средах, что позволяет окрашивать отдельные органеллы специфическим образом при совпадении физико-химических свойств красителя и мембран органелл [7].

В рамках данной работы мы предложили новую группу родственных структур, которые способны проявлять выраженную флуоресценцию в липидных каплях (адипосомах).

Схема 1. Синтез арилиденроданинов (Ia-Io) и их ациклических аналогов (II-V).

88

Данные элементы клеток стали рассматриваться как полноценные органеллы со своей особой структурой не так давно [8]. Адипосомы присутствуют во всех типах клеток, служат для хранения нейтральных липидов, занимающих особое место в метаболизме в качестве источников энергии и строительных блоков при формировании мембран и медиаторов клеточных сигналов [9]. При этом механизм биогенеза липидных капель и динамика их поведения до сих пор изучены недостаточно подробно [10]. Липидные капли контактируют с большей частью клеточных органелл, включая ЭПР, аппарат Гольджи, митохондрии, лизосомы и пероксисомы [11], через специальные белковые комплексы и влияют на функционирование этих органелл [12–15]. Кроме того, адипосомы играют важную роль в предотвращении липотоксичности [16] и окислительного стресса [17], которые развиваются при избыточном накоплении клеткой свободных жирных кислот. Эти нарушения ассоциируются с диабетом второго типа и неалкогольной жировой болезнью печени [18]. К другим патологиям, связанным с липидными каплями, относят воспаление [19], эпилепсию [20] и злокачественные новообразования [21]. Отдельно стоит упомянуть о возможности использования адипосом в качестве реперных маркеров при проведении криофлуоресцентной корреляционной микроскопии [22]. Таким образом, липидные капли представляют собой интересный объект для флуоресцентного мечения и разработки новых специфических красителей.

В данной работе с опорой на известные закономерности мы предложили ряд новых соединений – арилиденроданинов и их ациклических аналогов – веществ, подобных исследованным нами ранее имидазолоновым флуорогенным красителям, в структуры которых были введены фрагменты, отвечающие за появление флуоресценции в липофильном окружении.

Цель настоящего исследования – разработка методики синтеза таких арилиденроданинов и их ациклических аналогов, изучение оптических свойств полученных соединений, а также проверка возможности использования данных производных в качестве флуорогенных меток для окрашивания различных органелл в живых клетках.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Арилиденроданины (Іа-Іо) синтезировали по модифицированной литературной методике [23] реакцией различных ароматических альдегидов с роданином (схема 1), а далее исследовали оптические свойства полученного ряда соединений (см. дополнительные материалы и табл. 1). Мы установили, что максимумы поглощения находятся в области 355-425 нм, а максимумы испускания – в области 405-618 нм. Однако заметная флуоресценция оказалась характерна только для тех соединений, которые содержали два электронодонорных заместителя в арилиденовом фрагменте (Ik, Im, In). Ранее мы уже показали, что арилиденимидазолон, содержащий две метоксигруппы в орто- и мета- положениях (как у соединения (In)), способен окрашивать эндоплазматический ретикулум [24], поэтому для такого заместителя мы синтезировали производные тиазолидиндиона (II), а также малонового эфира и нитрила (ІІІ–V) [25–28] (схема 1).

Изучение оптических свойств соединений (II–V) показало, что максимумы поглощения и испускания лежат в тех же областях, что и в случае арилиденроданинов (Ia–Io), однако квантовый выход флуоресценции для производных (II–V) оказался значительно выше (табл. 1).

КРАСНОВА и др.

Соединение	Растворитель	Максимум поглощения, нм	Коэффициент по- глощения, М ⁻¹ см ⁻¹	Максимум испускания, нм	Квантовый выход флуоресценции, %
(Ia)	Диоксан	383	39 000	_*	_*
	EtOAc	379	41 500	_*	_*
	MeCN	379	42 000	_*	_*
	EtOH	387	40 500	_*	_*
	Вода	380	35 500	_*	_*
(Ib)	Диоксан	381	50 000	_*	_*
	EtOAc	378	67 000	_*	_*
	MeCN	379	49 000	_*	_*
	EtOH	386	50 500	_*	_*
	Вода	383	46 000	_*	_*
	Диоксан	377	39 000	_*	_*
	EtOAc	374	42 000	_*	_*
(Ic)	MeCN	374	39 000	_*	_*
	EtOH	401	38 000	_*	_*
	Вода	387	35 500	_*	_*
	Диоксан	369	34 000	~405	~0.05
	EtOAc	363	38 500	_*	_*
(Id)	MeCN	364	39 000	*	_*
	EtOH	376	33 000	_*	_*
	Вода	374	39 000	_*	_*
(Ie)	Диоксан	374	32 000	~405	~0.05
	EtOAc	371	34 500	*	_*
	MeCN	371	36 500	_*	_*
	EtOH	375	37 500	_*	_*
	Вода	373	36 500	*	_*
(If)	Диоксан	389	22 500	_*	_*
	EtOAc	386	24 000	_*	_*
	MeCN	385	25 000	_*	_*
	EtOH	389	22 500	_*	_*
	Вода	391	16 500	_*	_*

Таблица 1. Оптические свойства серии арилиденроданинов (Ia–Io) и их ациклических аналогов (II–V) в разных растворителях

БИООРГАНИЧЕСКАЯ ХИМИЯ том 50 № 1 2024

Таблица 1. (продолжение)

Соединение	Растворитель	Максимум поглощения, нм	Коэффициент по- глощения, М ⁻¹ см ⁻¹	Максимум испускания, нм	Квантовый выход флуоресценции, %
(Ig)	Диоксан	390	23 000	_*	_*
	EtOAc	378	26 500	_*	_*
	MeCN	380	26 500	_*	_*
	EtOH	390	23 500	_*	_*
	Вода	390	21 500	_*	_*
	Диоксан	405	43 500	_*	_*
	EtOAc	402	41 500	_*	_*
(Ih)	MeCN	401	44 500	_*	_*
	EtOH	407	37 500	_*	_*
	Вода	375	21 500	_*	_*
(Ii)	Диоксан	379	84 500	~405	~0.05
	EtOAc	373	87 500	_*	_*
	MeCN	372	86 500	_*	_*
	EtOH	386	100 000	_*	_*
	Вода	382	77 500	_*	_*
	Диоксан	383	26 000	_*	_*
	EtOAc	381	25 500	_*	_*
(Ij)	MeCN	382	24 500	_*	_*
	EtOH	397	21 500	_*	_*
	Вода	392	21 000	_*	_*
	Диоксан	423	28 500	536	0.96
(Ik)	EtOAc	418	26 500	561	1.31
	MeCN	371	25 000	618	0.54
	EtOH	404	35 000	544	<0.05
(11)	Диоксан	425	30 500	_*	_*
	EtOAc	423	29 000	~490	<0.05
	MeCN	420	29 000	_*	_*
	EtOH	424	34 000	_*	_*
	Вода	384	14 500	_*	_*

Таблица 1. (окончание)

Соединение	Растворитель	Максимум поглощения, нм	Коэффициент по- глощения, М ⁻¹ см ⁻¹	Максимум испускания, нм	Квантовый выход флуоресценции, %
(Im)	Диоксан	379	25 500	580	0.68
	EtOAc	376	26 500	594	0.49
	MeCN	376	26 000	617	0.43
	EtOH	383	25 000	573	<0.05
(In)	Диоксан	406	21 500	481	0.22
	EtOAc	404	21 000	481	~0.05
	MeCN	404	19 500	541	0.13
	EtOH	395	27 500	460	< 0.05
	Диоксан	375	29 500	405	~0.5
	EtOAc	359	34 000	*	*
(Io)	MeCN	371	37 000	_*	_*
	EtOH	376	34 500	_*	*
	Вода	372	35 000	_*	_*
	Диоксан	377	12 500	469	3.9
	EtOAc	375	12 500	473	3.9
(II)	MeCN	378	11 500	499	5.4
	EtOH	361	9500	468	1.4
	Вода	363	14 000	519	1.6
	Диоксан	406	7000	504	15
	EtOAc	406	7500	509	17
(III)	MeCN	409	7000	537	17
``	EtOH	410	7000	528	15
	Вола	407	6000	488	4
	Лиоксан	397	8000	493	13
(IV)	EtOAc	396	8500	498	14
	MeCN	395	8500	523	16
	FtOH	400	8500	523	11
	Bona	308	6500	504	1 2
(V)	Бода	255	**	477	-0.05
	Диоксан	255	** **	401	<0.05
	LIUAC	222	_** 	401	<0.05
	MeUN	356	**	503	< 0.05
	EtOH	358	**	485	<0.05
	Вода	356		551	

*Соединение не флуоресцирует.

** Соединение недостаточно растворимо.

Рис. 1. Микроскопия живых клеток HeLa Kyoto при добавлении 7 мкМ соединения (In) (a-e) или 5 мкМ соединения (III) (z-e). (a, z) – Флуоресценция образцов соединений (In) и (III) соответственно при их проникновении в липидные капли в клетках HeLa Kyoto; (δ , ∂) – клетки HeLa Kyoto в проходящем свете; (e, e) – флуоресцентные сигналы образцов соединений (In) и (III) соответственно, наложенные на изображение клеток в проходящем свете. Масштабная линейка во всех случаях соответствует длине 5 мкм.

Для всех соединений с выраженным варьированием флуоресценции в различных средах мы изучили возможность окрашивания клеточных структур. Показано, что при инкубации клеток линии Hela Kyoto с красителями (In) и (III) в концентрациях 7 и 5 мкМ соответственно происходит появление в BFP-канале выраженной флуоресценции, ассоциированной с расположением липидных капель, детектируемых в клетках при их визуализации в проходящем свете (рис. 1). При этом соединение (III) характеризовалось большим разгоранием при растворении в липидных каплях и большей интенсивностью флуоресценции при сходных условиях микроскопии. Также в обоих случаях в клетках присутствовали области, характеризующиеся гораздо меньшей интенсивностью флуоресценции, вероятно, представляющие собой скопления мембран органелл различных типов.

Таким образом, мы обнаружили, что арилиденроданин (In) и его ациклический аналог (III) способны окрашивать адипосомы и могут применяться во флуоресцентной микроскопии в качестве флуорогенных меток для живых клеток.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оборудование. Спектры ЯМР (δ , м.д.; *J*, Гц) регистрировали на спектрометре Avance III NMR (700 МГц; Bruker, США) при 303 К в DMSO-*d*₆ (внутренний стандарт – Me₄Si), спектры поглощения – на спектрофотометре Cary 100 Bio (Varian, США), спектры флуоресценции – на спектрофлуориметре Cary Eclipse (Varian, США). Температуры плавления определяли на приборе SMP 30 (Stuart Scientific, Великобритания) и не исправляли. Масс-спектры высокого разрешения регистрировали на приборе TripleTOF 5600+ (AB Sciex, США) с ионизацией методом электроспрея (ESI). Напряжение на капилляре составляло 5.5 кВ в режиме регистрации положительных ионов, 4.5 кВ в режиме регистрации

отрицательных ионов. Поток газа носителя – 15 Arb, газа распылителя – 25 Arb. Пробы вводили с помощью шприцевого насоса со скоростью потока 20 мкл/мин.

Синтез (Z)-5-(арилиден)-2-тиоксотиазолидин-4-онов (Ia–Io) (общая методика). К раствору 2-тиоксотиазолидин-4-она (роданина) (0.30 ммоль) в толуоле (2 мл) добавляли соответствующий альдегид (0.30 ммоль), бензойную кислоту (3.4 мг, 0.03 ммоль, 0.1 экв.) и пиперидин (3 мкл, 0.03 ммоль, 0.1 экв.). Полученную смесь кипятили 1–4 ч. Протекание реакции контролировали с помощью TCX (гексан– EtOAc). Затем реакционную смесь охлаждали, образовавшийся осадок отфильтровывали, промывали водой (3 × 5 мл), метанолом (2 × 5 мл) и Et₂O (2 × 5 мл), сушили при пониженном давлении с получением целевых соединений.

Синтез (Z)-5-(2,5-диметоксибензилиден)тиазолидин-2,4-диона (II). К раствору тиазолидин-2,4диона (43 мг, 0.38 ммоль) в толуоле (4 мл) добавляли соответствующий альдегид (0.50 ммоль, 1.37 экв.), бензойную кислоту (5 мг, 0.038 ммоль, 0.1 экв.) и пиперидин (4 мкл, 0.038 ммоль, 0,1 экв.). Полученную смесь перемешивали при 110°C в течение 22 ч. Протекание реакции контролировали с помощью TCX (гексан–EtOAc). Затем реакционную смесь охлаждали до 4°C, образовавшийся осадок отфильтровывали, промывали Et₂O (3 × 5 мл), водой (2 × 5 мл) и Et₂O (2 × 5 мл), сушили при пониженном давлении.

Синтез 2-(2,5-диметоксибензилиден)малононитрила (III). К раствору малононитрила (66 мг, 1.05 ммоль, 1.05 экв.) в метаноле (4 мл) добавляли соответствующий альдегид (1.00 ммоль) и пиперидин (7.3 мкл, 0.1 ммоль, 0.1 экв.). Полученную смесь перемешивали в течение 72 ч. Протекание реакции контролировали с помощью TCX (толуол). Затем растворитель упаривали, продукт очищали колоночной хроматографией (толуол–EtOAc). Синтез (*E*)-метил-2-циано-3-(2,5-диметоксифенил)акрилата (IV). К раствору метил-2-цианоацетата (0.55 ммоль) в толуоле (4 мл) добавляли соответствующий альдегид (0.50 ммоль), бензойную кислоту (6 мг, 0.05 ммоль, 0,1 экв.) и пиперидин (5 мкл, 0.05 ммоль, 0.1 экв.). Полученную смесь перемешивали при 110°С в течение 18 ч. Протекание реакции контролировали с помощью TCX (гексан– EtOAc). Затем растворитель упаривали, продукт очищали колоночной хроматографией (гексан– EtOAc).

Синтез диметил-2-(2,5-диметоксибензилиден) малоната (V). К раствору диметилмалоната (83 мг, 0.50 ммоль) в толуоле (4 мл) добавляли соответствующий альдегид (0.55 ммоль, 1.1 экв.), бензойную кислоту (6 мг, 0.05 ммоль, 0.1 экв.) и пиперидин (5 мкл, 0.05 ммоль, 0.1 экв.). Полученную смесь перемешивали при 110°С в течение 22 ч. Протекание реакции контролировали с помощью TCX (гексан– EtOAc). Растворитель упаривали, продукт очищали колоночной хроматографией (гексан–EtOAc).

Выходы реакций, температуры плавления, спектральные и оптические характеристики синтезированных соединений приведены в дополнительных материалах.

Окрашивание и флуоресцентная микроскопия клеток HeLa Kyoto. Клетки иммортализованной линии HeLa Kyoto (ATCC) культивировали в среде DMEM (ПанЭко, Россия) с добавлением 10% телячьей эмбриональной сыворотки (ПанЭко, Россия) и 100 ед./мл пенициллин-стрептомицина (ПанЭко, Россия) в увлажненном инкубаторе в присутствии 5% CO₂ при 37°C. За сутки до проведения микроскопии клетки высевали на чашки со стеклянным дном (SPL Life Sciences, Корея), диаметр чашек составлял 35 мм. На следующий день перед проведением микроскопии культивационную среду заменяли на среду для визуализации, состоявшую из раствора Хэнкса (ПанЭко, Россия) с добавлением 20 мМ НЕРЕЅ (Corning, США) и 7 мкМ вещества (In) или 5 мкМ соединения (III), разведенных из стоковых растворов в DMSO (10 мМ), и инкубировали 15 мин при комнатной температуре. Микроскопию проводили с помощью инвертированного флуоресцентного микроскопа BZ-9000 (Кеуепсе, Япония). Для получения изображений использовали объектив 60× PlanApo 1.40 NA (Nikon, США), куб ЕТ-EBFP2/C (Keyence, Япония), а также встроенную в управляющую микроскопом программу Bz-II Viewer функцию Binning 2×2. Результаты исследования обрабатывали в Fiji ImageJ (https://fiji.sc/).

ЗАКЛЮЧЕНИЕ

Синтезирована серия арилиденроданинов и их ациклических аналогов, исследованы оптические свойства полученных соединений. Установлено, что введение двух электронодонорных заместителей в данные структуры позволяет существенно увеличить батохромный сдвиг максимумов испускания, значение квантового выхода флуоресценции и его сольватохромный разброс. Однако для большинства новых соединений, в отличие от оригинальных арилиденимидазолонов, характерны гораздо меньшие значения этих величин в неполярных и апротонных средах. Заметной флуоресценцией отличались лишь соединения (III) и (IV), содержащие нитрильную группу.

Мы обнаружили, что два вещества из предложенных – соединения (In) и (III) – могут использоваться во флуоресцентной микроскопии в качестве флуорогенных маркеров, селективно окрашивающих липидные капли в живых клетках. Соединение (III) при этом обладает большей интенсивностью флуоресценции, чем соединение (In), и представляет собой перспективный инструмент для изучения адипосом. Расширение инструментария, применимого для визуализации, описания свойств и динамики липидных капель, несомненно способно благотворно повлиять на уровень внимания научного сообщества к этим органеллам, а также повысить степень понимания их участия как в физиологических, так и в патологических процессах.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 20-73-10195).

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Настоящая статья не содержит описания каких-либо исследований с участием людей и использованием животных в качестве объектов исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Plamont M.A., Billon-Denis E., Maurin S., Gauron C., Pimenta F.M., Specht C.G., Shi J., Quérard J., Pan B., Rossignol J., Moncoq K., Morellet N., Volovitch M., Lescop E., Chen Y., Triller A., Vriz S., Le Saux T., Jullien L., Gautier A. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 497–502.

https://doi.org/10.1073/pnas.1513094113

- Bozhanova N.G., Baranov M.S., Klementieva N.V., Sarkisyan K.S., Gavrikov A.S., Yampolsky I.V., Zagaynova E.V., Lukyanov S.A., Lukyanov K.A., Mishin A.S. // Chem. Sci. 2017. V. 8. P. 7138–7142. https://doi.org/10.1039/C7SC01628J
- Collot M., Kreder R., Tatarets A.L., Patsenker L.D., Melya Y., Klymchenko A.S. // Chem. Commun. 2015.
 V. 51. P. 17136–17139. https://doi.org/10.1039/C5CC06094J

4. Ermakova Y.G., Bogdanova Y.A., Baleeva N.S., Zaitseva S.O., Guglya E.B., Smirnov A.Y., Zagudaylova M.B., Baranov M.S. // Dyes Pigm. 2019. V. 170. P. 107550. https://doi.org/10.1016/j.dyepig.2019.107550

 Ermakova Y.G., Sen T., Bogdanova Y.A., Smirnov A.Y., Baleeva N.S., Krylov A.I., Baranov M.S. // J. Phys. Chem. Lett. 2018. V. 9. P. 1958–1963. https://doi.org/10.1021/acs.jpclett.8b00512

- Baranov M.S., Lukyanov K.A., Borissova A.O., Shamir J., Kosenkov D., Slipchenko L.V., Tolbert L.M., Yampolsky I.V., Solntsev K.M. // J. Am. Chem. Soc. 2012. V. 134. P. 6025–6032. https://doi.org/10.1021/ja3010144
- Perfilov M.M., Zaitseva E.R., Smirnov A.Y., Mikhaylov A.A., Baleeva N.S., Myasnyanko I.N., Mishin A.S., Baranov M.S. // Dyes Pigm. 2022. V. 198. P. 110033.

https://doi.org/10.1016/j.dyepig.2021.110033

- Farese R.V., Walther T.C. // Cell. 2009. V. 139.
 P. 855–860. https://doi.org/10.1016/j.cell.2009.11.005
- Onal G., Kutlu O., Gozuacik D., Dokmeci Emre S. // Lipids Health Dis. 2017. V. 16. P. 128. https://doi.org/10.1186/s12944-017-0521-7
- Olzmann J.A., Carvalho P. // Nat. Rev. Mol. Cell Biol. 2019. V. 20. P. 137–155. https://doi.org/10.1038/s41580-018-0085-z
- Valm A.M., Cohen S., Legant W.R., Melunis J., Hershberg U., Wait E., Cohen A.R., Davidson M.W., Betzig E., Lippincott-Schwartz J. // Nature. 2017. V. 546. P. 162–167. https://doi.org/10.1038/nature22369
- Velázquez A.P., Tatsuta T., Ghillebert R., Drescher I., Graef M. // J. Cell Biol. 2016. V. 212. P. 621–631.

https://doi.org/10.1083/jcb.201508102

- Fei W., Wang H., Fu X., Bielby C., Yang H. // Biochem. J.
 2009. V. 424. P. 61–67. https://doi.org/10.1042/BJ20090785
- Nguyen T.B., Louie S.M., Daniele J.R., Tran Q., Dillin A., Zoncu R., Nomura D.K., Olzmann J.A. // Dev. Cell. 2017. V. 42. P. 9–21. https://doi.org/10.1016/j.devcel.2017.06.003
- Kong J., Ji Y., Jeon Y.G., Han J.S., Han K.H., Lee J.H., Lee G., Jang H., Choe S.S., Baes M., Kim J.B. // Nat. Commun. 2020. V. 11. P. 578. https://doi.org/10.1038/s41467-019-14176-0
- Brookheart R.T., Michel C.I., Schaffer J.E. // Cell Metab. 2009. V. 10. P. 9–12. https://doi.org/10.1016/j.cmet.2009.03.011
- Kuramoto K., Okamura T., Yamaguchi T., Nakamura T.Y., Wakabayashi S., Morinaga H., Nomura M., Yanase T., Otsu K., Usuda N., Matsumura S., Inoue K., Fushiki T., Kojima Y., Hashimoto T., Sakai F., Hirose F., Osumi T. // J. Biol. Chem. 2012. V. 287. P. 23852–23863. https://doi.org/10.1074/jbc.M111.328708
- Greenberg A.S., Coleman R.A., Kraemer F.B., McManaman J.L., Obin M.S., Puri V., Yan Q.W., Miyoshi H., Mashek D.G. // J. Clin. Investig. 2011. V. 121. P. 2102–2110. https://doi.org/10.1172/JCI46069
- Bozza P.T., Viola J.P.B. // Prostaglandins Leukot. Essent. Fatty Acids. 2010. V. 82. P. 243–250. https://doi.org/10.1016/j.plefa.2010.02.005
- Chen Z.P., Wang S., Zhao X., Fang W., Wang Z., Ye H., Wang M.J., Ke L., Huang T., Lv P., Jiang X., Zhang Q., Li L., Xie S.T., Zhu J.N., Hang C., Chen D., Liu X., Yan C. // Nat. Neurosci. 2023. V. 26. P. 542–554. https://doi.org/10.1038/s41593-023-01288-6
- Tirinato L., Pagliari F., Limongi T., Marini M., Falqui A., Seco J., Candeloro P., Liberale C., Di Fabrizio E. // Stem Cells Int. 2017. V. 2017. P. 1–17. https://doi.org/10.1155/2017/1656053

96

- Scher N., Rechav K., Paul-Gilloteaux P., Avinoam O. // iScience. 2021. V. 24. P. 102714. https://doi.org/10.1016/j.isci.2021.102714
- Sánchez-Recillas A., Navarrete-Vázquez G., Hidalgo-Figueroa S., Bonilla-Hernández M., Ortiz-Andrade R., Ibarra-Barajas M., Yáñez-Pérez V., Sánchez-Salgado J.C. // J. Pharm. Pharmacol. 2020. V. 72. P. 1186–1198. https://doi.org/10.1111/jphp.13295
- Sokolov A.I., Gorshkova A.A., Baleeva N.S., Baranov M.S. // Russ. J. Bioorg. Chem. 2022. V. 48. P. 1367–1371. https://doi.org/10.1134/S1068162022060243
- 25. Durai Ananda Kumar T., Swathi N., Navatha J., Subrahmanyam C.V.S., Satyanarayana K. // J. Sulphur Chem.

2014. V. 36. P. 105–115. https://doi.org/10.1080/17415993.2014.970555

- Madasamy K., Kumaraguru S., Sankar V., Mannathan S., Kathiresan M. // New J. Chem. 2019. V. 43. P. 3793–3800. https://doi.org/10.1039/C8NJ05953E
- Kharas G.B., Crawford A.L., Payne K.J., Sanidad M.N.T., Sims M.W., Leung D., Watson K. // J. Macromol. Sci. A. 2005. V. 42. P. 683–690. https://doi.org/10.1081/MA-200058623
- Swenton J.S., Freskos J.N., Morrow G.W., Sercel A.D. // Tetrahedron. 1984. V. 40. P. 4625–4632. https://doi.org/10.1016/S0040-4020(01)91523-6

2,5-Dimethoxy-benzylidene-rhodanine and Its Acyclic Analogues As Selective Fluorogenic Dyes for Lipid Droplets of Living Cells

S. A. Krasnova^{*, **, #}, Yu. A. Bogdanova^{*}, A. I. Sokolov^{*, ***}, I. N. Myasnyanko^{*, ***}, A. Yu. Smirnov^{*, ***}, and M. S. Baranov^{*, ***}

[#]*Phone:* +7 (964) 865-16-24; *e-mail:* svetlanakr2002@mail.ru

* Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, ul. Miklukho-Maklaya 16/10, Moscow, 117997 Russia
 ** National Research University Higher School of Economics, ul. Myasnitskaya 20, Moscow, 101000 Russia
 *** Pirogov Russian National Research Medical University, ul. Ostrovitianova 1, Moscow, 117997 Russia

We report about a series of arylidene-rhodanines and their acyclic analogues. The fluorescent properties of these substances were studied. We showed that the derivatives containing a 2,5-dimethoxybenzylidene fragment or similar groups are characterized by a noticeable variation in the fluorescence quantum yield depending on the properties of the medium. We discovered that two of the synthesized compounds – dimethoxy-benzylidene-rhodanine and dimethoxy-benzylidene-malononitrile – can be used as selective fluorogenic dyes for lipid droplets (adiposomes) of living cells for labeling under fluorescent microscopy conditions.

Keywords: rhodanines, fluorogens, adiposomes, lipid droplets, fluorescence